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ABSTRACT

This paper examines the trade-offs between computational cost and accuracy for two new state-of-the-art codes

for computing three-dimensional radiative transfer: a community Monte Carlo model and a parallel implementation of

the Spherical Harmonics Discrete Ordinates Method (SHDOM). Both codes are described and algorithmic choices are

elaborated. Two prototype problems are considered: a domain filled with stratocumulus clouds and another containing

scattered shallow cumulus, absorbing aerosols, and molecular scatterers. Calculations are performed for a range of

resolutions and the relationships between accuracy and computational cost, measured by time-to-solution and memory

use, are compared.

Monte Carlo accuracy depends primarily on the number of trajectories used in the integration. Monte Carlo

estimates of intensity are computationally expensive; accuracy in intensity calculations can be increased using a range

of variance reduction techniques, but these compromise the excellent agreement between the true error and estimates

obtained from unbiased calculations. SHDOM accuracy is controlled by both spatial and angular resolution; different

output fields are sensitive to different aspects of this accuracy, so that the optimum accuracy parameters depend on

which quantities are desired as well as on the characteristics of the problem being solved. One complication to using

SHDOM is that accuracy must be assessed through convergence tests and all calculations from un-converged solutions

may be biased.

SHDOM is more efficient (i.e. has lower error for a given computational cost) than Monte Carlo when computing

pixel-by-pixel upwelling fluxes in the cumulus scene, while Monte Carlo is more efficient in computing downwelling

flux in the stratocumulus scene, especially at higher accuracies. The two models are comparable for downwelling flux

in cumulus and upwelling flux in stratocumulus. SHDOM is substantially more efficient when computing pixel-by-

pixel intensity in multiple directions; the models are comparable when computing domain-average intensities. In some

cases memory use, rather than computation time, may limit the resolution of SHDOM calculations.
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1. Computational methods for solving the radiative transfer equation in three

spatial dimensions

In the fundamental equation describing the transfer of monchromatic, unpolarized radiation in the atmo-

sphere the radiation field depends on two angular dimensions (the zenith and azimuthal angles) and three

spatial dimensions. In most applications of radiative transfer in the atmospheric sciences this equation is

simplified by omitting the two horizontal spatial dimensions so that the radiation field depends only on angle

and vertical location. The so-called ”1D” radiative transfer equation may be used repeatedly to account for

variability in the horizontal dimension by assuming that there is not net transfer of radiation in the horizon-

tal. But this assumption is not always valid, and differences between radiation fields computed using 1D

and 3D radiative transfer can impact fluxes at the top and bottom of the atmosphere (see, e.g, Scheirer and

Macke 2003), local heating rates (e.g. Di Giuseppe and Tompkins 2003), and especially the estimation of

atmospheric properties from remotely-sensed radiation (e.g. Loeb et al. 1998; Marshak et al. 2006, among

many others). This is especially true for problems involving clouds at visible wavelengths, where multiple

scattering is dominant and cloud extinction varies on spatial scales smaller than the radiation mean free path.

There are two main barriers to the use of three-dimensional radiative transfer. First, specifying the

problem can be quite difficult, since this requires describing the instantaneous distribution of extinction,

single-scattering albedo, and scattering phase function in three spatial dimensions at very small scales. No

current observing system is up to this task, although fine-scale cloud models can provide useful test cases.

Secondly, solving the three-dimensional radiative transfer equation is much more computationally expensive

than solving its one-dimensional counterpart.

There are two broad classes of methods for computing radiative transfer in three-dimensionally inhomo-

geneous atmospheres (see, e.g., Evans and Marshak 2005). Explicit methods discretize the radiation field in

space, using discrete grids or finite elements, and in angle, using discrete ordinates or spherical harmonics.
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The methods start with a first guess solution and iteratively adjust the radiation field until it agrees with

the radiative transfer equation to some specified accuracy. The most widely-used explicit method in the

atmospheric sciences is the spherical harmonics discrete ordinates method (SHDOM; Evans 1998).

Explicit methods compute the full spatially- and angularly-varying radiation field at once. This means

that any and all output quantities, from domain-averaged top-of-atmosphere fluxes to cell-by-cell flux di-

vergences, can be derived from the same basic calculation without much additional computation. It also

implies, on the other hand, that one must do a complete calculation even if only a subset of quantities are

desired. The only way to assess accuracy when using explicit methods is to check for convergence as a

function of algorithm accuracy parameters. All quantities from an un-converged solution, including domain

averages, may be biased. Explicit methods are difficult to formulate as parallel algorithms, and are often

limited by the amount of memory available for a calculation.

Monte Carlo methods, in contrast, solve the radiative transfer equation (expressed as integral over orders

of scattering) by computing a large number of discrete trajectories through the full radiation field. In the

atmospheric sciences Monte Carlo methods are usually described as simulating the trajectories of individual

photons; this explanation is fundmentally incorrect (see, for example, Mishchenko 2008) but is wide-spread.

Samples are followed from their introduction into the medium through a series of scattering and absorption

events until they are either completely absorbed or exit the medium.

Monte Carlo methods are extremely flexible, allowing for the calculation of almost any quantity includ-

ing some, like the distribution of path lengths, that can not be computed by explicit methods. Basic radiation

transport algorithms allow for the computation of fluxes and flux divergences rates; intensity calculations

add significant computational cost. Accuracy comes slowly in Monte Carlo calculations, increasing as the

inverse square root of the number of samples, but the uncertainty can be estimated by dividing the total

number of samples into batches and computing the standard error of the set of batches. Each trajectory rep-

resents an independent sample of the full solution, so integral quantities are more accurate than spatially- or
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angularly-resolved estimates for a given number of trajectories. Monte Carlo methods are embarrassingly

parallel since any subset of the complete calculation, down to the level of individual trajectories, can be

computed independently.

Both explicit and Monte Carlo methods can provide the correct answer to a given problem in three-

dimensional radiative transfer given sufficient resources. The computational costs of the solution, however,

can vary tremendously between the two approaches. The relative efficiency of the methods depends on what

quantities are required and the size and complexity of the problem domain.

This paper examines the trade-offs between cost and accuracy for SHDOM, an explicit method recently

reformulated as a parallel algorithm, and a freely-available Monte Carlo radiative transfer for monochro-

matic problems in unpolarized solar radiative transfer. The next section describes the new Monte Carlo

model including details about the computational structure and algorithms; the following section describes

how SHDOM has been adapted to run on multiple processors and how this impacts the computational cost.

We describe two prototype problems in three-dimensional radiative transfer, consider the impact of resolu-

tion and algorithmic parameters in both models, then compare the relationships between computational cost

and accuracy in solving these problems for both SHDOM and the Monte Carlo model. The final section

distills these results and other considerations into guidelines for choosing the most computationally efficient

method for a given radiative transfer problem.

Throughout the paper we assume that readers are generally familiar with both the SHDOM algorithm

(Evans 1998) and Monte Carlo simulation of radiative transfer; for an overview of the latter we recommend

Iwabuchi’s (2006) lucid introduction to the subject or Evans and Marshak (2005) for more mathematical

detail and rigor.
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2. The I3RC Community Monte Carlo model

One of the goals of the International Intercomparison of 3-Dimensional Radiation Codes project (I3RC;

see Cahalan et al. 2005) is to foster the development and sharing of tools for computing three-dimensional

radiative transfer. At the time of the first I3RC workshop (November 1999) SHDOM was the only freely-

distributed tool available for computing three-dimensional radiative transfer. Scientists wishing to use

Monte Carlo methods had to write their own code or obtain one from a colleague. To facilitate the use

of Monte Carlo methods the project sponsored the development of a Monte Carlo model, intended for

use in both research and education, based on requirements developed by members of the I3RC commu-

nity. We implemented this model, which has been available from http://i3rc.gsfc.nasa.gov/

I3RC_community_model.htm since August 2006. Calculations in this paper were done with the

”Cornish-Gilliflower” release of March 2009. Spurred in part by results from the I3RC project, several

other Monte Carlo codes have become available in the the intervening years including the MC-UNIK and

Grimaldi models [http://www.ifm-geomar.de/index.php?id=981] and MCARATS [http:

//www.geocities.jp/null2unity/mcarats/].

a. Computational architecture

The I3RC Community Monte Carlo radiative transfer code is written as a series of modules and several

programs in object-oriented Fortran 95. Each module corresponds to a different conceptual aspect of the

problem (a single scattering phase function, an incoming stream of radiation, a domain filled with clouds,

aerosols, and gases, and so on) and contains the definitions for one or more derived types and a set of

procedures that operate on those derived types. Procedures outside a module do not have access to the

internal data structures; this data must be accessed or modified through procedures defined by the module.

Modules may build on one another: the module used to describe the distribution of optical properties within
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a domain, for example, uses the variables describing scattering phase functions. The majority of the modules

and the relationships between them are shown in Figure 1 .

Object-oriented programming is the practice of packaging data structures together with the procedures

that act on them. The technique is not often used in the atmospheric sciences but has proved very valuable

in other communities because it provides a way to divide a problem into conceptually separate parts. This

makes it easier to test individual software elements as isolated units, which in turn helps programmers

identify errors more quickly. Because objects store data locally it is possible to describe, validate, or solve

a problem in steps, rather than assembling every piece of input data, output space, and algorithmic detail

into a single subroutine call. Local copies of data also facilitate the use of code in parallel environments.

Finally, object-oriented programming make it possible to reuse elements of the software – one could write an

interface that would apply a plane-parallel radiative transfer model to each column in a three-dimensionally

variable domain, for example, or replace any module in our code with one that implemented the same

procedures. There are two major drawbacks, both related to the encapsulation of data within objects: first,

that extra coding is required to provide access to this data, and secondly that the code may be less efficient,

in terms of processing time or memory, at completing tasks than architectures where data is manipulated

directly.

The heart of the I3RC Community Monte Carlo model is a monochromatic integrator. This solver

processes a series of samples (”photons”) using forward Monte Carlo to provide estimates of radiative

quantities. The problem is specified by using other modules to describe the distribution of optical properties

of an arbitrary number of components (e.g. clouds, aerosols, gases, etc.) within a three-dimensional domain.

Scattering phase functions for each component are tabulated at discrete values of some parameter (typically

the particle size) and a single entry from this table represents the phase function within each grid cell.
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b. Algorithmic aspects

The integrator provided with the I3RC model implements both straightforward ray tracing and maximum

cross-section algorithms to compute the photon trajectories. We have found ray tracing to be more efficient

in most applications. Cost increases for both algorithms with the optical depth of the medium and the number

of cells into which the medium is divided. Panel a of Figure 2 shows this dependency for a conservatively-

scattering plane-parallel medium with scattering phase functions appropriate to a distribution of cloud drops

with effective radius 8.8 µm, normalized by the time for the simplest case (lowest optical depth and single-

celled domain).

The integrator can also provide estimates of intensity in arbitrary directions using local estimation. This

technique involves accumulating the extinction from each scattering location to the boundary of the medium

along each direction in which intensity is desired, so it requires additional computational time that increases

with the number of cells that must be traced to the boundary at each scattering event. The solid lines in

panel c of Fig. 2 quantify this cost in a plane-parallel medium.

c. Methods for reducing computation time

Most Monte Carlo models treat absorption by mutiplying the weight w of each sample by the single

scattering albedo ω0 of the scattering medium at each interaction. In atmospheres with ω0 < 1 sample

weights may become small after multiple scattering leading to small contributions to the overall radiative

transfer calculation. Sample weights may similarly become small after reflection from a surface with small,

but non-zero, reflectance. Russian roulette is a technique in which samples with small w are re-sampled by

adjusting w according the value of a uniform random number r, i.e.

w′ =
0 for r ≥W/w

W for r < W/w

(1)
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(see equation 6 in Iwabuchi 2006, and references therein). Normally W = 1. Time savings result because

the sample terminates when w′ = 0. Unlike simple truncating very weak samples (e.g. section 5a of Barker

et al. 2003), Russian roulette does not introduce bias, but it decreases the time to solution by an amount

depending on the optical depth of the medium, the single scattering albedo, and the surface albedo. Panel b

of figure 2 shows the ratio of the cost of radiation transport computed using Eq. 1 to the cost of of the same

calculation without using Russian roulette.

Iwabuchi (2006) adapted Russian roulette for use during using local estimation. At each scattering

event the local estimate may be small if either the phase function at the angle between the direction of travel

and the direction of the intensity is small, or if the integrated extinction between the scattering location

and the medium boundary is large; in both cases small contributions are replaced with Russian roulette

estimates (see Eq.s 13 and 14 in Iwabuchi 2006) . This reduces the number of paths that must be traced

from scattering locations to the medium boundary during local estimation. The cost of intensity calculations

using this algorithm, relative to the cost of radiation transport, is shown in the dashed lines in panel c of 2;

considerable time is saved relative to equivalent calculations that do not use Russian roulette during local

estimation, particularly at large optical depths and low viewing zenith angles. The method, like Eq. 1, is

unbiased.

d. Methods for reducing variance in intensity calculations

At visible wavelengths the scattering phase function for cloud drops has a strong forward peak due to

diffraction. This poses a particular problem for local estimation: collisions in which the sample is oriented

in one of the directions at which intensity is desired are very rare but the phase function is so large that

just a few collisions can dominate the intensity estimate. If the number of samples per batch is moderate

these poorly-sampled events can lead to large values of standard error in intensity estimates. This problem

is resolved when averaging over very large numbers of samples but the requisite amount of simulation can
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be computationally daunting if pixel-by-pixel intensities are desired.

1) MODIFYING THE SCATTERING PHASE FUNCTION USED FOR INTENSITY CALCULATIONS

One alternative is to modify the calculation, typically by modifing the scattering phase function used for

local estimation. This reduces the variance between batches but may introduce biases in intensity estimates.

(The phase functions used during transport are not affected, so estimates of flux and flux divergence remain

unbiased.) As one such variance-reduction method, the I3RC Community Monte Carlo model provides the

ability to replace the scattering phase function used for local estimation with a hybrid

P̃ (cos Θ) =
PG(Θ) for Θ ≤ Θm

P (Θ) for Θ > Θm

(2)

where P (Θ) is the original phase function and PG(Θ)is a Gaussian with user-specified width σG. The

matching angle Θm is chosen so that P (Θm) = PG(Θm) and the Gaussian phase function is normalized to

ensure that ∫ 1

cos (Θm)
PG(cos Θ)d cos Θ =

∫ 1

cos (Θm)
P (cos Θ)d cos Θ (3)

The original phase function P (Θ) can be used for local estimation during the first Ne orders of scattering.

This is similar to the approach described in section 5.b.2 of Barker et al. (2003), though they replace original

phase function than does the Henyey-Greenstein phase function; Equation (2) represents a less dramatic

modification, since phase function values for scattering angles greater than Θm are left untouched.

Any method which modifies the phase function for local estimation will have trade-offs between de-

creased standard error and increased absolute error. Figure 3 shows these relationships for Eq. 2 in homo-

geneous media using a scattering phase function appropriate for a distribution of cloud drops with effective

radius 8.8 µm. In these calculations the sun is at 60 degrees; intensity errors are computed as the root-mean-

squared error over 31 viewing directions in the principal plane from zenith to 75 degrees in the forward- and

back-scattering directions. The decrease in standard error is expressed as the factor by which run time would
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need to be increased to make the standard error in the unmodified calculation match the standard error using

2, i.e. by the square of the ratio of the standard errors. Standard error decreases steeply and error increases

slowly as σG increases and the full phase function is modified more dramatically, though the error increases

for smaller optical thickness as low order scattering contributions become more important. Using Eq. 2

only when Ne > 2 (dashed lines) decreases the error by a factor of 2 or more but also decreases the amount

of variance reduction, particularly at small optical thicknesses where low orders of scattering dominate the

local estimate.

2) REDISTRIBUTING INTENSITY IN SPACE

The I3RC Community Monte Carlo Model implements also implements a novel method introduced by

Barker et al. (2003) for reducing the variance of intensity estimates by redistributing the estimate in space.

Especially large contributions during the local estimation are trunctated. The excess is accumulated and, at

the end of the calculation, distributed throughout the domain in an amount proportional to the intensity itself.

This acts to reduce the pixel-to-pxiel variance in intensity. Domain-mean intensity is unaffected, though the

method tends to reduce the highest values of intensity and enhance the lowest values (Barker et al. 2003),

with the result that the error characteristics for spatially-resolved intensity depend strongly on the problem

being solved.

3. SHDOM as a parallel explicit method

In principle the term SHDOM (Spherical Harmonics Discrete Ordinates Method; see Evans 1998) de-

scribes an algorithm; in practice, it also describes a freely-available code that implements the algorithm.

SHDOM represents the radiation field by discretizing the angular aspects with a spherical harmonics series

and the spatial aspects on a Cartesian grid. The radiative source function is stored as a variable-length series
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of spherical harmonics. The radiative transfer equation is solved iteratively by 1) transforming the source

function from spherical harmonics to discrete ordinates, 2) integrating the product of the source function

and transmission along discrete ordinates, 3) transforming the discrete ordinate intensities to spherical har-

monics, and 4) calculating the source function from the intensity in spherical harmonics space. To achieve

higher accuracy with a limited amount of memory, an adaptive grid is implemented in which regions where

the source function is changing more rapidly have a higher density of grid points. The horizontally-uniform

”base grid” on which the problem is defined is supplemented as required by adaptive grid points formed by

splitting cells in half during the solution iterations.

a. Reformulation of SHDOM as a parallel algorithm

SHDOM has been re-formulated as a parallel code. Parallelism is achieved using the Message Pass-

ing Interface (MPI; see, for example, https://computing.llnl.gov/tutorials/mpi/) which

supports both shared- and distributed-memory environments. Parallel calculations require a horizontally pe-

riodic domain. Using SHDOM in a parallel mode can decrease the wall-time to solution but, perhaps more

importantly, it allows for the solution to much larger problems than the serial version, since the memory

required to represent the radiation field may be distributed among processors.

The computational domain is divided among processors with base grid points repeated on both sides of

each boundary. Data are passed between neighboring processors during three steps in the algorithm: 1) the

direct beam solar flux calculation at each internal grid point, 2) the radiative transfer equation integrations

along each discrete ordinate during the solution iterations, and 3) the integrations along the viewing direc-

tions for the intensity output. Data transfer to and from files at the beginning and end of the calculation are

handled by a single processor.

The majority of data transfer occur during the solution iterations (step 2 in the previous paragraph).

During those iterations the discrete ordinate integrations proceed backwards from each grid point until a
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cell face is reached for which the intensities are known at all four corner grid points. When using a single

processor the backwards integration usually stops after just one grid cell due to the discrete ordinate octant

dependent ”sweeping” order. For each horizontal plane of grid points, however, there is one line of grid

points for which the integration must travel back to the previous plane to reach grid points with known

intensities. For multiple processors, the ”upwind” grid points on each processor sub-domain boundary

are calculated (for one ordinate direction and one horizontal plane of base grid points at a time) with a

special routine before the rest of the integration proceeds. This routine first carries the integrations from the

entering boundary to the exiting boundary. If a cell face with known intensities is reached the completed

intensity is stored to send back to the originating processor. Otherwise, the exiting position, accumulated

transmission, and partial intensity integral are sent to the neighboring processors. This intensity integration

and information passing is iterated until the discrete ordinate integrations have finished on all processors,

when sub-domain boundary intensity values are exchanged with all the other processors. Direct solar beam

transmission integrations and the output intensity integrations along the viewing directions are carried out

in a similar manner.

The parallel implementation of SHDOM does not give exactly the same results as the serial version

due to differences in the discrete ordinate integrations in the iterative solver which may be amplified by the

discrete nature of the cell splitting decisions for the adaptive grid. Differences between parallel and serial

solutions are small, however, when compared to the overall accuracy of the algorithm.

b. Efficiency of SHDOM on multiple processors

The parallel version of SHDOM can shorten the wall-time to solution but it increases the total amount

of calculation required. There are three sources of extra computation: the repeated grid points at the edge

of each sub-domain; the time processors spend passing data to each other or waiting for other processors

to synchronize; and the extra effort (described in the last section) required for tracing the discrete ordinate
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intensities. All sources of overhead are reduced (in a fractional sense) by making the sub-domains as large

as possible, so that the ratio of edge points to interior points is small.

The amount of time used by SHDOM running on multiple processors relative to a single processor de-

pends on the problem being solved, the number of processors used, and various aspects of the computational

architecture. Figure 4 shows results for two widely-available architectures: a shared-memory system using

two processors with four cores each and a distributed-memory supercomputer. Radiative transfer is com-

puted for the stratocumulus cloud field described in the next section using a base grid of 128 × 128 × 41

points and resolution parameters taken from run 4F in Table 2. Figure 4 shows the ratio of the total CPU

time used, relative to that used by a single processor, as a function of the number of processors used. (Un-

controllable issues cause small random variations in this ratio.) For both architectures the total CPU time

used increases significantly above some number of processors as the additional costs described in the last

paragraph become noticeable. Note that the algorithm used for domain decomposition minimizes the num-

ber of boundary points when the number of processors is an integer squared (when the domain is mapped as√
Np ×

√
Np processors), and maximizes the number of boundary points when the number of processors

is a prime (when the domain is mapped as Np × 1 processors).

Processor loads may become unbalanced if the optical properties in the sub-domains, and hence the

density of internal grid points, varies significantly. To use computational resources more efficiently a load

balancing procedure may be enabled. This procedure uses the number of base and adaptive grid points from

a fast, low angular resolution run to adjust the sub-domain boundaries so that the number of points is roughly

the same among processors. Load balancing can also be used to account for non-uniform processor speeds.
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4. Two prototype problems

We illustrate the solution characteristics of explicit and Monte Carlo methods using two cloud fields

produced by large-eddy simulations as prototype problems. One is a 3.5 km square domain, 1 km deep,

filled with stratocumulus clouds; this scene was used in Phase II of the I3RC inter-comparisons (Cahalan

et al. 2005). The second is a field of scattered cumulus over the ocean (Stevens and Seifert 2008). The

original domain is 3 km deep and 19.2 km on a side; in these calculations we use a 4.8 km square subset

of this domain chosen to minimize the number of cloudy pixels along the edge. This sub-domain has a

vertically-projected cloud fraction of 14.8%. Figure 9 shows Images of these fields from high-resolution

calculations with SHDOM and the I3RC Monte Carlo model.

For each cloud field we perform simulations at a non-absorbing wavelength in the visible (0.67 µm), and

for the cumulus case we perform additional calculations at a mildly absorbing wavelength in the near in-

frared (2.13 µm). To convert cloud water content to optical properties we assume that cloud water is divided

into droplets whose sizes obey a gamma distribution with effective variance 0.1. Effective radius in each is

diagnosed from the liquid water content assuming constant droplet number (72/cm3 for the stratocumulus,

per the I3RC case specification, and 70/cm3 for the cumulus, per the simulation) with a minimum size of

4 µm. We pre-compute single scattering properties (extinction cross-section, single scattering albedo, and

scattering phase function) as a function of drop size using Mie theory and tabulate these values at 50 equally

spaced values of effective radius from 0.5 µm to 25 µm. Very few cells have values of effective radius that

exactly match one of the tabulated values, so we interpolate the extinction and single scattering albedo and

choose the phase function for the closest tabulated value of effective radius.

The cumulus domain includes aerosols. We use properties obtained from the Aeronet station on Cape

San Juan during Dec 2005 and Jan 2006. We use the highest optical aerosol optical depth observed during

this period, namely τaerosol = 0.233 at 0.675 microns; at this time the Aeronet retrievals, when mapped onto a

log-normal size distribution, imply a an effective raduis re = 0.964 microns, log-normal standard deviation
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of 1.10, and complex index of refraction m = 1.4 − 0.0029i. We assumed a complex index of refraction

of m = 1.36 − 0.0020i at 2.13 microns; the optical thickness at this wavelength is τaerosol = 0.2. The

aerosols are distributed uniformly throughout the 3 km deep domain. Rayleigh scattering is also included in

the cumulus cloud fields for the 0.67 µm simulations.

For all calculations the sun introduces radiation in the direction µ0 = −0.707, φ = 35. The flux is

normalized to 1 on a horizontal plane. The surface is Lambertian with albedo 0.05. We compute upwelling

flux at the top of the domain, downwelling flux at the bottom of the domain, and, for the calculation at

2.13 microns, flux divergence (proportional to heating rates) within the domain. Intensity is computed at

nine angles symmetric about nadir in the φ = 0 plane, corresponding to the viewing angles of the MISR

instrument, i.e. at nadir and at µ = (0.334, 0.5, 0.7, 0.898) for φ = 0 and φ = 180.

5. Accuracy and standard error using Monte Carlo variance reduction meth-

ods

Section 2.d described variance-reduction methods for Monte Carlo methods that may be used to decrease

the standard error of the calculation at the cost of increased bias. Both the amount of variance reduction

and the bias introduced depend in part on the aggressiveness with which the techniques are applied, such

that larger values of σG and smaller values of Ne in Eq. 2, or smaller values of the maximum allowed local

estimate (for the method described in Sec. 2.d.2), tend to increase bias and make the results less variable. But

both cost (increased bias) and benefit (decreased variance) also depend on the relative frequency with which

large contributions to the local estimate are encountered, since this determines how effective the reduction

can be; this depends in turn on the distribution of optical properties within the domain and the geometry of

the problem being solved (i.e. the angle between incoming solar radiation and each of the angles at which

intensity is computed). Thus neither cost nor benefit can be predicted a priori and the choice of parameters
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is necessarily somewhat subjective.

We explore the performance of the two variance reduction methods described in Sec. 2.d in both pro-

totype scenes over a range of parameters detailed in Table 1. The runs are specified more fully in Section

7; most relevant here is that calculations using 10n, n = (6, 7, 8, 9) samples are compared to benchmark

results using 1010 samples.

Both variance reduction methods reduce the error in intensity calculations to some degree at most reso-

lutions (see Figure 5). On its own the spatial redistribution of large local estimates (run a) is more effective

in the stratocumulus scene than in the cumulus where the cloud fraction, and hence the area over which

excess contributions can be spread, is small. Spatial redistribution alone become less effect when the num-

ber of samples (and the computation time) is large. Using any form of the hybrid phase function (Eq. 2)

decreases the error by a factor of three or more, which is roughly equivalent to computing ten times as many

samples. More aggressive settings are more effective at low sample numbers but the error decrease becomes

less sensitive to the parameters when 109 trajectories are used.

But this reduced error comes at a cost, shown in Figure 6: Monte Carlo estimates of uncertainty, as

measured by the standard error of multiple sub-calculations, is not always an accurate estimate of the true

error. This occurs when the Monte Carlo noise becomes smaller than the bias introduced by modifying the

phase function or local estimate; in these calculations this is evident in all of the highest trajectory-count

(lowest error) calculations and, for some parameter sets, for runs using 108 samples. Whether this error is

acceptable or not depends on the application.

6. Resolution, cost, and accuracy using SHDOM

For any given problem the computational cost and accuracy of the SHDOM algorithm depend primarily

on the angular and spatial resolution used in the simulation. Calculations are most efficient when these

16



resolutions are well-matched. We illustrate this point using a series of calculations at 0.67 microns for the

two prototype problems described in the previous section.

SHDOM angular resolution is specified by the number of discrete ordinates in zenith angle (Nµ) and

azimuthal angle (Nφ); often these are chosen to ensure isotropic angular resolution, i.e. Nφ = 2Nµ. Spatial

accuracy is specified by the number of grid points in the base grid (Nx × Ny × Nz , Ny = Nx) and by the

splitting accuracy, which controls how many adaptive grid points are produced. We perform simulations

using six values of angular resolution parameters (numbers 1 to 6) and eight values of spatial resolution, five

(sets A-E) in which the base grid matches the grid on which optical properties are defined and three (sets F,

G, and H) in which the base grid is roughly twice as dense in the horizontal. This results in 48 simulations

for each problem. Simulations are divided among a number of processors approximately proportional to the

memory required; this numbers ranges from 1 to 64. The solution accuracy is 10−5 and sequence accel-

eration is used during solution iterations. Load balancing is not used: the stratocumulus field is relatively

uniform, while the low cloud fraction of the cumulus field results in a small proportion of adaptive grid

points. (Using load balancing for the cumulus field at resolution 5E, for example, resulted in a 10% CPU

time improvement for 16 processors.)

Accuracy is assessed by comparison to the run with the highest spatial and angular resolution (run 6H).

Figure 7 shows the accuracy in intensity calculations for both scenes, measured as the root-mean-square

error over every grid point and every angle; Figure 8 shows analogous results for upwelling and downwelling

fluxes at the top and bottom of the stratocumulus scene.

For the stratocumulus scene, errors in intensity decrease rapidly with decreasing splitting accuracy for

any given angular resolution, then remains roughly constant as angular resolution dominates the error. Error

increases at resolution F relative to E at higher angular resolutions because the splitting accuracy relaxes

(from 0.02 to 0.03) while the base grid resolution increases.

For the cumulus scene, adaptive cell splitting substantially improves accuracy in intensity calculations
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at little computational cost for high angular resolution (Nµ ≥ 16) calculations. This is because cells are

split only in the small fraction of the domain that is cloudy. Doubling the spatial resolution of the base grid

(runs F-G) results in a five-fold increase in computational cost with almost no gain in accuracy; this is also

true for flux (not shown).

The relationships between resolution, cost, and error in calculations of upwelling flux for the stratocu-

mulus scenes (Fig. 8) are qualitatively similar to those for intensity, although the base grid resolution is more

important. This is a result of how the algorithm operates: SHDOM calculates grid point fluxes from the dis-

crete ordinate intensities during the solution iteration, so the base grid resolution in clear sky is important to

the flux accuracy at the top and bottom of the domain because there are no adaptive grid cells in the clear

areas. Intensity is calculated after the solution iterations by integrating the source function, so the clear sky

is not important, and accuracy in intensity is controlled by the splitting accuracy.

Accuracy in downwelling flux at the surface, however, is almost entirely controlled by angular resolu-

tion, and increases in spatial resolution only increase the computational time. This is because the down-

welling radiation has more angular structure (from low orders of scattering of the direct solar beam), and

so requires higher angular resolution to capture, than does upwelling radiation. Diffuse radiation at cloud

base is much less spatially variable than at cloud top, however, so spatial resolution has little influence on

accuracy.

7. Relative efficiency of Monte Carlo and SHDOM

In this section we seek to address a practical question: given a choice between SHDOM and the I3RC

model, which code provides the most efficient path to solution of a given radiative transfer problem? The

more efficient model, in this context, is the one that produces the lowest error for a given computational cost.

We answer this question by performing identical calculations with both models at a range of resolutions and
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comparing the relationships between error and computational cost for a range of quantities.

We select a subset of the SHDOM resolution parameters described Table 2, namely resolutions (1A, 2B,

3C, 4D, 5G) for the stratocumulus case and (1C, 2C, 3B, 4C, 5D) for the cumulus case. For both sets of

calculations resolution 6H provides the benchmark. Monte Carlo calculations use ray tracing for radiation

transport and employ Russian roulette re-weighting of weak samples. Results for flux and flux divergence

use relatively fast simulations in which intensity is not computed. Russian roulette is also employed in

intensity calculations. Monte Carlo resolution is essentially determined by the number of trajectories. For

flux calculations we compare results for 10n, n = (6, 7, 8) samples with a benchmark calculation using 109

samples; benchmarks for intensity calculations use 1010 samples.

Example benchmark intensity calculations are shown in Fig. 9. The benchmark calculations agree to

within a few tenths of a percent for most quantities (see Table 3). Some of the remaining differences are

rooted in the algorithms themselves. Though we have specified the same distribution of optical properties

for both radiative transfer models, SHDOM and the I3RC Monte Carlo model solve slightly different prob-

lems: SHDOM assumes that the medium varies linearly between cell corners, while the Monte Carlo model

assumes that cells are internally uniform with discontinuous jumps at cell boundaries.

Figure 10 shows the accuracy, measured as the root-mean-square over all pixels, as a function of total

time to solution for both models and both scenes. Both axes are logarithmic so the Monte Carlo errors, which

decreases as the inverse square root of the solution time, appears as a straight line. Monte Carlo standard

error estimates agree almost perfectly with the true error, as we expect. Both models produce larger errors

for the cumulus scene than for the stratocumulus because the domain is larger. SHDOM becomes more

efficient than Monte Carlo in computing upwelling fluxes for the cumulus scene as the resolution increases,

but is increasingly less efficient for the stratocumulus case. Figure 11 shows the relationships between

computational time and the error in flux divergence calculations at 2.13 µm, measured as the RMS over all

cells in the domain. Absolute values of flux divergence are much smaller in the cumulus scene than in the
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stratocumulus, so both models produce lower errors in the cumulus field.

The two models produce roughly comparable errors in spatially-resolved flux and flux divergence for a

given computational cost. The cell-splitting employed by SHDOM is a particular advantage in the cumulus

field because grid resolution is high in a small portion of the domain. SHDOM errors in downward flux

decrease slowly with computation time in the stratocumulus cloud field because only there is no way except

high angular resolution to resolve the angular dependence of the downwelling flux.

For a given time to solution, accuracy for pixel-level fluxes for SHDOM and Monte Carlo methods are

within a factor of ten, but for pixel-level intensity calculations SHDOM is much more efficient. Figure 12

shows the accuracy in pixel-level intensity calculations, expressed as the root-mean-square over all pixels

in all nine directions, for both models. Monte Carlo results are provided for unbiased calculations and

for an example computed using Eq. 2 with parameters from run D in Table 1 (σG = 5◦ and Ne = 3).

Using the hybrid phase function reduces the error substantially but, as we showed in Fig. 6, estimates of

the uncertainty (downward-pointing triangles) are biased at the highest resolutions relative to the true error

(upward-pointing triangles). Our choice of parameters from Table 1 was conservative but even the most

aggressive application of variance reduction can not reduce the error for a given computational cost to those

approaching SHDOM.

Errors in Monte Carlo estimates of domain-average intensity are smaller by a factor of 1/
√
Nx,y, where

Nx,y is the number of pixels (642 for the stratocumulus scene and 962 for the cumulus), while errors for

SHDOM the errors remain roughly constant. This implies that the two methods are about equally efficient

at computing domain-averaged intensity.

Time to solution is not the only computational cost; the amount of memory required may also be a

constraint.Explicit methods such as SHDOM must store the complete five dimensional radiation field which

can be a significant burden at high resolution. Figure 13 compares the memory and computation time used

by SHDOM and Monte Carlo for each of our two scenes. SHDOM memory use increases steadily with
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CPU time, covering a range of almost 500 for the stratocumulus scene resolutions used in Fig. 13. Note

that if aerosols are omitted from the cumulus scene the adaptive spherical harmonic truncation in SHDOM

becomes effective and memory use drops by a factor of 3.5. For the highest resolution calculation on the

cumulus scene SHDOM uses 71Gb of memory, demonstrating that SHDOM resolution may be limited by

memory constraints, especially on smaller computers, long before computation time becomes an issue.

Monte Carlo memory use in Fig. 13 is for runs in which intensity is calculated; runs in which only

radiation transport is computed use about 15-30% of this amount. For each scene, memory use reflects only

the number of processors used in the calculation, which ranged from 4 to 44; this number was chosen to

make the most efficient use of supercomputer resources (i.e. we used the smallest integer multiple of 4

processors which would allow the calculation to finished in less than 8 hours). In principle, however, all

Monte Carlo calculations could be done on a single processor using the amount of memory indicated by the

horizontal lines, trading decreased memory use for an increase in the elapsed time to solution.

8. Matching tools to tasks

Either explicit or Monte Carlo methods can be used to solve a given three-dimensional radiative transfer

problem and the methods are in very good agreement when sufficient computational resources are available.

But even low-resolution, high-error calculations are very computationally expensive, so identifying the most

efficient solution may be important. The results in Section 7 provide some guidance.

SHDOM and Monte Carlo methods are roughly equally efficient at computing pixel-level fluxes and cell-

by-cell flux divergence. SHDOM benefits when computing upward flux in a medium where optically thick

regions (τ > 1) are sparse, as in our cumulus example. Monte Carlo is somewhat superior for computing

downwelling flux, since SHDOM requires high angular resolution to resolve the low orders of scattering.

Because Monte Carlo errors are uncorrelated in space (i.e. between pixels) the Monte Carlo method is much
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more efficient at computing domain-average fluxes and flux divergence profiles than SHDOM.

SHDOM is vastly more efficient than Monte Carlo methods for computing pixel-by-pixel intensity when

intensity in multiple directions is required. Accuracy improvements from variance reduction techniques are

significant but modest compared to this difference. SHDOM and Monte Carlo are comparably efficient at

computing domain-average intensity in a range of directions. In the special case that a single intensity is

computed, particularly in the nadir direction, the difference is less stark (see Fig. 2).

These results apply to quasi-monochromatic calculations. Many applications, however, require inte-

gration over some portion of the electromagnetic spectrum. Two common examples are the calculation of

broadband fluxes for energy balance problems and the calculation of narrowband intensities for remote sens-

ing problems. The latter calculations are typically made in narrow spectral regions (”bands”) in which the

optical properties of most constituents can be considered constant, requiring only the use of a k-distribution

to treat gaseous absorption within the band. Broadband calculations require calculations in a series of bands.

Monte Carlo methods can include spectral integration within or across bands at very little cost by di-

viding samples among spectral intervals, while SHDOM must perform a series of independent calculations.

(To avoid uncommon but severe errors SHDOM now uses an independent initialization for each k in a dis-

tribution.) SHDOM’s convergence rate increases with the amount of absorption, so that computation time

increases less than linearly with the number of ks. Assuming even O(10)ks per band SHDOM remains

much more efficient for remote sensing problems requiring pixel-scale intensity values. Monte Carlo meth-

ods can become comparable if substantial spatial averaging of the pixel-level narrow-band intensities was

required (e.g for computing the signal at a remote sensor with spatial resolution of order kilometers), and

they are are substantially more efficient for broadband problems. Since the two models are comparably

efficient at computing grid cell flux divergence, Monte Carlo methods are therefore much more efficient at

computing the broadband flux divergence needed for coupling to dynamical models.

These generalizations apply when the grid spacing is smaller than the radiation mean free path., i.e.
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when the 3D radiative transfer is resolved. On the coarser resolution grids such as those typical of cloud-

resolving models, SHDOM must employ significant cell-splitting, so that Monte Carlo methods may become

substantially more efficient at computing pixel-by-pixel fluxes.

Efficiency may not be the only consideration in choosing a model, especially where the two methods are

comparable. Monte Carlo methods are particularly simple to use: a single parameter controls accuracy and

the uncertainty in (unbiased) calculations is known. Alternatively, calculation can be performed until some

specified accuracy is reached. In this way Monte Carlo techniques requires less sophistication on the part of

the user.
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TABLE 1. Runs used to assess the performance of variance reduction methods for intensity in two prototype
problems. σG and Ne are defined in Eq. 2; ζmax is defined in Sec. 5.b.1 of Barker et al. (2003) and its value
follows Eq. 26 of that paper. Error is measured as the root-mean-square over all pixels and nine viewing
angles relative to a benchmark calculation using 1010 trajectories All variance reduction methods are biased
estimators, meaning that standard errors underestimate the true Monte Carlo sampling error.

Case σG Ne ζmax Error (×102) using 109 trajectories
(deg) Stratocumulus Cumulus

RMS Std Err. RMS Std Err.
O – – – 3.01 2.91 0.48 0.46
a – – 75 3.02 1.19 0.50 0.33
b 5 – – 1.22 0.73 0.25 0.20
c 9 – – 1.21 0.50 0.23 0.14
d 5 3 – 1.39 1.04 0.29 0.25
e 9 3 – 1.31 0.90 0.27 0.21
f 5 3 75 1.23 0.75 0.27 0.22
g 9 3 75 1.14 0.53 0.25 0.18
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TABLE 2. Angular and spatial resolutions used in SHDOM calculations.

Stratocumulus Cumulus
Angular Nµ Spatial Nx Nz Nx Nz Splitting accuracy

1 4 A 64 21 96 100 0.30
2 6 B 64 21 96 100 0.10
3 8 C 64 21 96 100 0.05
4 12 D 64 21 96 100 0.03
5 16 E 64 21 96 100 0.02
6 32 F 128 41 192 151 0.03

— — G 128 41 192 151 0.02
— — H 128 41 192 151 0.015
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TABLE 3. Absolute differences between benchmark runs using SHDOM and Monte Carlo. Reflectance bias
are the root-mean-square error over the nine directions at which intensity is computed. Most differences are
less than 1%. Monte Carlo estimates of the standard error are show for comparison.

Stratocumulus (×103) Cumulus (×103)
Bias RMS error MC std. err. Bias RMS error MC std. err.

Flux up -3.72 5.00 1.26 1.21 1.64 0.62
Flux down 2.38 24.97 1.62 1.29 8.80 2.04
Reflectance 1.30 3.99 2.94 0.46 1.08 0.47
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represents a distinct module; one box containing another indicates that the module represented by the outer
box relies on the facilities provided by the inner box. Arrows indicate objects supplied as part of the problem
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parameters sets detailed in Table 1. Slightly modifying the phase function used for local estimation (letters
b-g) decreases error by roughly the same amount as increasing the number of trajectories by a factor of ten.

39



O

O

O

O

a

a

a

a

b

b

b

b

c

c

c

c

d

d

d

d

e

e

e

e

f

f

f

f

g

g

g

g

O

O

O

O

a

a

a

a

b

b

b

b

c

c

c

c

d

d

d

d

e

e

e

e

f

f

f

f

g

g

g

g

10-2 10-1 1
Estimated RMS error in reflectence

10-2

10-1

1

10-2

10-1

1

Tr
ue

 R
M

S 
er

ro
r 

in
 r

ef
ec

ta
nc

e

Stratocumulus

Cumulus

Inc
rea

sin
g c

ompu
tat

ion t
im

e

FIG. 6. True error in intensity calculations, estimated by comparison with an unbiased benchmark, as a
function of standard error estimate for Monte Carlo calculations with (letters) and without (circles) the use
of biased variance reduction methods. Both axes are logarithmic. The two estimates agree when the com-
putation time is low and the Monte Carlo noise dominated the error, but when large numbers of trajectories
are used the bias caused by modifying the local estimate calculation emerges.
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FIG. 7. Error in directional reflectance (intensity) computed using SHDOM as a function of total computa-
tion time for stratocumulus (top) and cumulus (bottom) scenes. Both axes are logarithmic. Letters refer to
spatial resolution and numbers (and line types) to angular resolution detailed in Table 2. Error is computed
as the root-mean-square difference from the benchmark (6H) calculation. The RMS intensity difference
normalized by the mean intensity is shown on the right axis.
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FIG. 8. Error in flux calculations, measured as the root-mean-square difference from resolution 6H over all
pixels, as a function of total CPU time in the stratocumulus scene for upwelling flux at 1.0 km (top) and
downwelling flux at the surface (bottom). The RMS flux difference normalized by the domain mean flux is
shown on the right axis. Accuracy in downwelling flux depends mostly on angular resolution; accuracy in
upwelling flux depends on spatial resolution as well.
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FIG. 9. Nadir reflectance (intensity times π) for the two scenes described in Sec. 4 computed with SHDOM
and the I3RC community Monte Carlo model. Differences between the two models are quantified in Table
3; in most cases they are a fraction of a percent of the incoming solar flux.
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FIG. 10. Error in flux at 0.67 µm as a function of total computation time for calculations with the I3RC
Community Monte Carlo model (circles) and SHDOM (squares). Panel a) shows results for flux up at the top
of the domain, panel b) flux down at the domain base; in both panels filled symbols refer to the stratocumulus
scene and open symbols the cumulus scene. Error is the root-mean-square over all columns in the domain
assessed by comparison with a benchmark calculation. Monte Carlo estimates of standard error (diamonds)
agree almost perfectly with the true error. Monte Carlo results for flux use radiation transport calculations
only.

44



●

●

●

CPU Time (seconds)
102 103 104

10-1

10-2

10-3

R
M

S 
er

ro
r 

in
 fl

ux
 d

iv
er

ge
nc

e

Stcu

Cu

Monte Carlo

SHDOM

FIG. 11. Error in flux divergence at 2.13 µm as a function of total computation time for calculations with the
I3RC Community Monte Carlo model (circles) and SHDOM (squares). Error is the root-mean-square over
all cells in the domain assessed by comparison with a benchmark calculation. Both axes are logarithmic.
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FIG. 12. Root-mean-square error in directional reflectance at 0.67 µm as a function of total computation
time for calculations with SHDOM (squares) and the I3RC Community Monte Carlo model with (triangles)
and without (circles) biased variance reduction methods. The variance reduction method decreases the error
but, at the highest resolutions, the standard error (upward-pointing triangles) underestimates the true error
(downward-pointing triangles. For pixel-by-pixel fluxes SHDOM is substantially more efficient than Monte
Carlo.
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FIG. 13. Relationships between memory and computation time for the I3RC Community Monte Carlo
model (circles) and SHDOM (diamonds) for the stratocumulus (closed symbols) and cumulus (open sym-
bols) scenes. Both memory and computation time increase with accuracy for SHDOM. This need not be
true for Monte Carlo calculations, and the dotted lines show the memory required for a single processor.
As a practical matter, however, we increased the amount of memory by using more processors to keep the
wall-clock time to solution less than 8 hours. Memory requirements for SHDOM are reduced substantially
for the cumulus scene when aerosols are omitted.
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